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Objectives

1. To derive extra derivative multistep methods of order 3 and 4,
using collocation technique.

2. Trigonometrically-fitting the methods.

3. Validating the methods using a set of special second order differential
equations which have oscillatory solutions.

4. Comparing the numerical results with other well known
existing methods in the scientific literature.
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1. Introduction

The special second order ordinary differential equations (ODEs) can be

represented by

V' =f(x,¥), y(xo) = xq, ¥ (x9) = ¥o' (1)

in which the first derivative does not appear explicitly.

This type of problems often appears in the field of science, mathematics and
engineering such as quantum mechanics, spatial semi-discretizations of wave

equations, populations modeling and celestial mechanics.
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Currently, equation (1) can be solved directly without converting it first to a
system of first order ODEs. Such methods are direct multistep method, Runge-

Kutta Nystrom (RKN) method, and hybrid method.

Work RKN can be seen can be seen in Dormand et al. [1] and Sommeijer [2].
Work on hybrid method can be seen in Franco [3] and Coleman [4],where they
have developed hybrid algorithm and constructed the order condition of the

hybrid methods for directly solving equation (1).

Research on directly solving equation (1) using methods which involved, the
interpolation and collocation technigues has been done by various researchers
such as the work of authors in [5]-[6]. As well as the work of Awoyemi [7] and

Jator [8].
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The special second order ODEs also often exhibit oscillatory solutions which cannot

be solved efficiently using conventional methods.

To obtain a more efficient process for solving oscillatory problems, numerical
methods are constructed by taking into account the nature of the problem.

This results in methods in which the coefficients depend on the problem.

Numerical methods can adapted to the special structure of the problem, such
techniques for this purpose are trigonometrically-fitted and phase-fitted

techniques.
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A good theoretical foundation of exponentially fitted technique was given by
Lyche [9]. Since then a lot of exponentially fitted linear multistep have been

constructed mostly for special second order ODEs such as (1).

Vanden Berghe et. al [10]. Introduced an explicit exponentially fitted explicit

Runge-Kutta which integrate exactly first order systems whose solution can be

expressed as linear combination of functions of the form {e’“, e"lt} or

{cos(wt), sin(wt)}.

This idea is extended to Runge-Kutta method by Simos [11] and Franco [12].
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Fang and Wu [13], developed a Trigonometrically fitted explicit Numerov-type

method for second-order initial value problems with oscillating solutions.

In this research, we are going to construct extra derivative multistep methods of
order 3 and 4 using collocation technique and Chebyshev polynomial will be used

as the basis function

In order to improve the efficiency of the methods, we trigonometrically fitted the
methods so that the coefficients will depend on the fitted frequency and step size
of the problems. And used the methods for solving oscillatory Differential

Equations
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2. Derivation of Linear Multistep Methods (LMM) Using Collocation
Technique

The general k-step LMM for solving special second order ODEs is given as

k — 1,2k
j=0 ajyn+j =h j:O:ijn+j ’

Here, we will use Chebyshev Polynomials as basis function. The following are the
first five terms of the sequence from Chebyshev Polynomials :

To(x) =1, T;(x) = x, T,(x) = 2x% —1, Ts(x) = 4x3 — 3x, T,(x) = 8x* —

8x% +1 (2)
Here, we are going to develop linear multistep method with extra derivatives of the

form of

j=0 @Yn+ = R Xjo jfnej + h® XjoGnsj 3)
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where a;, uj and 7; are constant values, f,,.; =y p1jand gny; = ¥ s
We proceed to approximate the exact solution y(x) by the interpolating

function of the form

n

YO0 = ) Tan(x = %), )

j=0

which is the polynomial of degree n and satisfied the equations

y'(x) = f(x,y(x), Xp S X = xk+p) ) y(xg) = Y. (5)
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2.1. Derivation of LMMC(3)

For n = 4, equation (4) can be written as
y(x) = ag + a;(x — x;) + ax[(x — x4)? — 1] + az[(x — x,)° — 3(x — x)]

+ay[(x — x)* — 8(x — x,)? + 11. (6)
Differentiating equation (6) three times and we get the first, second, and third
derivatives of the equations as follows:
y'(x) = ag + a2(x — x;) + az3[(x — x4)? — 1]

+ag4[(x — x)° — 4(x — x)], (7)
y'"(x) = 2a, + az6(x — x3) + a,4[3(x — x3)% — 4], (8)
y'"(x) = 6az + as24(x — x3), (9)
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Next, equations (6) and (8) are collocated at x = X, 1, Xk 4, and interpolated equation

(9) at x = xp41 Which yields
Y(Xke1) = ag + ag (pe1 — X)) + ap[(Xpgr — x1)° — 1]

+ az[ (g1 — x1)° — 3k — 1))

tag[(ogrr — x)* = 81 — x)% + 1] = Yiesn,
Y(Xp42) = ag + a1 (Xgyz — X)) + ax[ (s — x4)% — 1]

+ az[ (g2 — %)% — 3(Xpr2 — X1)]

+ay[(xXp42 — xk)4 — 8(Xp42 — xk)z + 1] = Yi42,

(10)

(11)
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V" (Xpr1) = 205 + az6(xgsq — xx) + ag4[30k 41 — x1)* — 4] = frr1, (12)
V" (Xpr2) = 205 + az6(xgin — xx) + a44[3(k 42 — x1)* — 4] = frr2, (13)

' (xg41) = 6a3 + a3 24X 1 — Xk) = Gt1- (14)

By substituting h = x5, — X, and 2h = x; ., — X}, into equations (10)-(14), we obtain

the following:

Vi+1 = ag + (W)a; + ay[h? — 1] + az[h® — 3h] + a4[h* — 8h? + 1], (15)
Vier2 = ag + 2h)ay + a,[4h? — 1] + a3[8h3 — 6h] + a,[16h* — 32h? + 1], (16)
fr+1 = 2a, + az(6h) + a,[12h% — 16], (17)
fri2 = 2a, + a3(12h) + a,[48h% — 16], (18)

Jk+1 = 6az + a,(24h) . (19)
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Rearranging equations (15)-(19) into matrix form as follows:

1 h h*-1 h3 —3h h* —8h%+1 T[%0]
1 2h 4h®*—1 8h3®—-6h 16h* —16h%*+1||%
0O O 2h 6h? 12h% — 16 a
0O O 2h 12h? 48h% — 16 as
0O O 0 6h 24h? 1A,

" Yk+1 T

Vk+2

= | Afk+1

hfk+2

NG +14

which can be simplified as

XA=Y (20)



Universiti
Putra

S| .
= Malaysia

A= X—lY (21)
where
10h* -7  2h*+6h*+7 2h* + 12h?% + 7]
12h3 12h3 12h2
1 1 13h% — 12 5h? + 12 3(h? + 2)
h h 12h?2 12h?2 12h?
x-1 — 2 3h% + 4 3h% + 2
=10 0 —— —
3h3 6h3 3h?
0 0 1 1 1
3h2 3h? 2h
0 0 1 1 1
12h3 12h3 12h2
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Solving (21), the coefficients of ag,a4, a,, as, and a, are obtained in terms of yy41, Yk+2,
fr+1 frerz and Giiq.

1 10h* -7 1 2h* + 6R% +7
Ao = 2Yk+1 — Yk+2 T 2 2 fre1 + 17 12 fre+2
1 2h* + 12h%* + 7
- 12 hz gk'l‘l’
VYi+1 Yiesz 1 13h%—12 1 5h% + 12
a; = — + ~ fre+1 — fre+2
h h 12 h 12 h

3
+Z (hZ + 2)gk+1l

2 fir1 13h%+4 1(3h% +2)
A2 = =372 +g 2 Jk+2 T3 " Jk+1s
. zlfk+1_1fk+2+l
3 3 h 3 h ng+1'
_ 1 fr+1 + 1 frs2 _ 1 Gr+1
12 h2 12 h%2 12 h

a4:

Substituting the coefficients into equation (6) and letting x = x5, we obtain the following

AntIAaFiAaA .
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1 10h* =7 1 2h* 4+ 6h% + 7
Y(Xk+3) = | 2Vk41 = Vw2 + 12 12 fra1 12 12 fr+2

1 2h* +12h% + 7
- Ir+1

12 h?
2 _ 2
N (_ y,\;l+1 N y,;l+2 B 112 13h : 1z, 112 5h ; 12,
z (h* + 2)gk+1) (X3 — X)
+ ( gﬁ;;l t 23h22+ 4fk+2 _%(3h2h+ 2) gk+1> [Cers — 2% — 1]
+ (%fk}:l ;fkgz ts 9k+1> [Cras = 21 = 3(xp43 — x4)]
+ (%fkgl ;fkgz +35 > 9k+1> [(rgz — x)* — 8(xpq3 — x4)° + 1] = Ypeys.
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Letting 3h = (xj43 — X)), we obtain the discrete form of LMMC as

2
Yi+3 = 2Yk+2 — Vi+1 T z(_fkﬂ + 7fr+2 — hGk+1), (22)
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2.2 Order and Consistency of LMIMC method

Definition 1:

The linear difference operator L is defined by

k
LG Rl = ) oy e+ jh) = R f (e + jh) = Wonjg (e + )],
=0

where y(x) is an arbitrary function that is sufficiently differentiable on [a, b]. By
expanding the test function and its first derivative as Taylor series about x and

collecting the terms to obtain

Lly(x); h]l = coy(x) + c1hy’® + -+ c,h @Dy @ (x) + -,
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where the coefficients of ¢, are constants independent of y(x). In particular

Co = ;{0“]» €1 = ?=o(j0‘j)»
j(2)
C = ?:0(?“1_11]'),
(3)
0= (o)
k I " —_—
. =Z<](q)a ](q 2) "
I q' 7 (q-2)"7

I
o

J

j(q—3)

T @-3)

—_

——

(23)
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Definition 2:

The associated linear multistep method (22) is said to be of the order p if
Co=0C =+ =Cpy1 = 0and ¢,y # 0.

Definition 3 [Consistency of the method]

The method is said to be consistence if it has order at least one.

By substituting the coefficients into equations (23), we obtain

1
CO=61=c2=c3=c4=Oandc5=§.
The new method is consistent and has order p = 3.

And denoted as linear multistep method with extra derivative using collocation

technique of order three (LMMC(3)).
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2.2. Derivation of LMMC(4) , order and consistency of the method

In this section, we derive the LMMC of order four. For n = 5, we obtain equation (4) as
y(x) = ag + a;(x — x;) + ax[(x — x,)* — 1] + az[(x — x,)* — 3(x — x;)]
t+a,[(x —x)* — 8(x — x)? + 1]
tas[(x — x,)°> — 20(x — x3)3 + 5(x — x)]. (24)

Differentiating equation (24) three times gives
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Differentiating equation (24) three times gives
y'(x) = ay + a;2(x — x) + a33[(x — ;) — 1]
+ag4[(x — x,)° — 4(x — x)] + as5[(x — x)* — 12(x — x)* + 1], (25)

y"'(x) = 2a, + as6(x — x;.) + a,4[3(x — x;)? — 4]
+as20[(x — x,)° — 6(x — x;)], (26)

y'""(x) = 6as + a,24(x — x3,) + as60[(x — x)% — 2], (27)
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Equations (24) and (27) are collocated at x = xy41, X;+2 , and equation (26) at
X = X412, Xk+3 Which yields
Vi+1 = o + (W)ay + ay[h? — 1] + az[h® — 3h] + a,[h* — 8h? + 1]

+as[h® — 20h% + 5h], (28)

Vierz = ag + (2h)ay + a,[4h? — 1] + a3[8h3 — 6h] + a,[16h* — 32h? + 1]

+az[32h° — 160h3 + 10h], (29)
frewz = 20y + az(6h) + a,[12h% — 16] + as[20h% — 120h4], (30)
fiers = 2a, + a3 (18h) + a,[48h? — 16] + as[540h% — 360h], (31)
Jr+1 = 6a3 + a,(24h) + as(60hh? — 120), (32)

Jr+2 = 6a3 + a,(48h) + as(240hh? — 120). (33)
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Equations (29)-(33) are written in matrix form as follows:

XA=Y
Where

1 h h®—1 h3-3h h* —8h% +1 h®> — 20h3 + 5h

1 2h 4h® -1 8h3—6h 16h* —32h%+1 32h°> —160h3 + 10h
y=|0 O 2h 12h? 48h3 — 16h 160h* — 240h?

0 0 2h 18h?2 108h3 — 16h 540h* — 360n% |’

0 0 0 6h 24h? 60h3 — 120h

0 0 0 6h 48h? 240h3 — 120h

A=[ay a1 a; az as as]’ and

Y = [Vk+1 Ye+2 Nferz Pfksz hGrs1 RGr+2]”.
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3(6h* + 6h% + 7) (2h* — 8h% — 21)
(32h* + 72h% + 49) (17h* — 18h% — 56)
1 1 (153h* + 120h% + 110)
(3h* 4+ 120h% + 100) (392h* + 480h? + 165)

(149h* — 690h? — 495)

¥ 300h? Jiex2
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3(3h% + 4) 2(h? + 3) 2(9h% +7)
a2 = 1Oh2 k+2 — 5h2 k+3 15h2 gk+1
(9h% + 32)
15h2 gk+2
2(h* + 1) 2(h* + 1) (8h* +3)
a3 = - 5h2 fk+2 + 5h2 fk+3 + 15h2 gk+1
(23h% + 18)

3 3 7 4
Ay = S0Nh? fr+2 — SORZ fr+3 — 50h Ir+1 T 1oh Irk+2/

3

as = —mez + mes + Toonz 9k+1 T Toonz Ik+2:
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We substituteay,aq, a,, az, a, and as into equation (24) and by letting x = x443, and
3h = (x;43 — X} ) We obtain the discrete form of LMMC as

2 h3
Yi+3 = 2Vk+2 — Yk+1 T 1_0 (fk+2 + fr+3) — % (Gk+1 + 29k+2) (34)

By substituting back the coefficients into equations (23), we obtain

1
CO=61=CZ=C3=c4=c5=0andc6=—m.

From Definition 2, the new method is consistent and the order is p = 4.

And denoted as linear multistep method with extra derivative using collocation

technique (LMMC(4)).
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3. Trigonometrically-Fitting The Methods

In this section, we adapt the trigonometrically-fitting technique to
LMMC(3). By letting some of the coefficients to be unknown values of k;,
fori = 1,2,3, (22) is written as follows:

Yn+1 = 2Vn — Yn-1 + W2 (k1 fom1 + 12 f5) + RP (k3 9n—-1). (35)
Assuming that y(x) is a linear combination of the functions

{sin(vx), cos(vx)} for v € R. We obtain the following equations:
cos(H) = 2 — cos(H) — H?(k, cos(H) + k, + r3H sin(H)), (36)
K, sin(H) = k3 H cos(H),

—

where H = vh, h is the step size and v is fitted frequency.
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Solving equation (36) and letting, k; = —1/6, the value of the remaining coefficients

is obtain in terms of H.

7 3 ey 8L g 20777 o 7939 g ooz
276780 " 60480 3628800 3421440 ’
1 1 1 17 31 691
Ks=————H?——H*———H®———H8 ——— 1%+ O(H"?).

6 18 45 1890 8505 467775

This new method is denoted as Trigonometrically-fitted linear multistep method

with extra derivative using collocation technique of order three (TF-LMMC(3)).
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Then we apply the trigonometrically-fitting techniqgue to LMMC(4). By letting
some of the coefficients to be unknown values of k;, for i = 1,2,3,4, rewrite the

formula in (34) as

Y1 = 2Yn — Yno1 + R2(a fy + Ko fne1) + B3 (Kagn—1 + Kagn).  (37)

Assuming that y(x) is the linear combination of the function {sin(vh), cos(vh)}

for v € R. Therefore, the following equations are obtained.

cos(H) = 2 — cos(H) — H?(k, + 1, cos(H) + k3 H sin(H)),
(38)
iy sin(H) = —H[k3 cos(H) + k4,

where H = vh, h is the step size and v is fitted frequency.
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Solving equations in (38) simultaneously by letting k; = 9/10 and k3 = —1/30

the value of the remaining coefficients is obtained in terms of H as follows:

1 1 313 923 6437
=———H"- H® — H® — H' + 0(H"),
2770 144 100800 725760 12474000 (H)
1 3 83 983
K, =——+—H*+ H® + ———H® + 0(H').

15 400 432000 1209600

This new method is denoted as Trigonometrically-fitted linear multistep method

with extra derivative using collocation technique of order four (TF-LMMC(4)).

The other coefficients of the method remain the same. This method is
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4. Numerical Results and Discussion

In this section, the new methods LMMC(3), LMMC(4), TF-LMMC(3) and TF-
LMMC(4) are tested for problems .1-5 . Comparisons are made with other

existing methods.

The following are the notation used in figures 1-10:
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TF-LMMC(3) Trigonometrically-fitted linear multistep method with collocation

method of order three developed in this paper.

LMMC(3) A linear multistep method with collocation method of order three
developed in this paper.

TF-LMMC(4) Trigonometrically-fitted linear multistep method with collocation
method of order four developed in this paper.

LMMC(4) A linear multistep method with collocation method of order four
developed in this paper.

Explicit three-stage fourth-order hybrid method derived by Franco

[12]
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Explicit three-stage fourth-order RKN method by Hairer et al.[14].

PFRKN4(4) Explicit four-stage fourth-order Phase-fitted RKN method by
Papadopoulos et al.[15].

Diagonally implicit three-stage fourth-order RKN method derived in
Sommeijer [16]

Diagonally implicit three-stage fourth-order RKN method derived in

Senu et al. [17]

Semi-implicit three-stage fourth-order hybrid method developed in

Ahmad et al. [18]
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The following are efficiency curves TF-LMMC(3) Method.

Problem 1(An almost Periodic Orbit
problem studied by Stiefel and Bettis [19])

y1"(x) + y1(x) = 0.001cos(x),
y1(0) =1,y,°(0) =0,

y,"(x) + y,(x) = 0.001sin(x),
y,(0) = 0,y,'(0) = 0.9995,

Exact solution is y; = cos(x) +
0.0005xsin(x), and y, = sin(x)
—0.0005xcos(x).

The fitted frequency is v = 1.

L ogimax-eiros)

0.2

04 06 08 10

Time (seconds)

e TF-LMMC(3) © LMMC(3) © EHM3(4)
x  RKN3(4) PFRKN4(4) * DIRKN(HS)
+ DIRKN3(4) STHM3(4)

Figure 1: The efficiency curve for TF-LMMC(3) for
Problem 1 with Ty, = 10*and h = %fori =1,..,5.
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Problem 2 (Inhomogeneous system

by Lambert and Watson [20])

d? .. 4,
TN o vty (0 + VG £ (0, K\\

y1(0) = a+ f(0),y,"(0) = f'(0), ’g‘
a2 " -
%(x) = —v?y,(x) + v*f(x) + f (x) ;

y,(0) = £(0),y,'(0) = va + f'(0) .
Exact solution is y; (x) = acos(vx) + '

f(x),y,(x) = asin(vx) + f(x), f(x) is chosen

-104

—_ - T .-.I T T T —
to be e7%9%% and parameters v and a g
_ e TFLMMC(3) © LMMC(3) © EHM3(4)
are 20 and 0.1 respectively. %  RKN3(4) PFRKN4(4) * DIRKN(HS)
+ DIRKN3(4) STHM3(4)

Figure 2: The efficiency curve for TF-LMMC(3) for
Problem 2 with T,y = 10*and h = 0';25 for
[=2,..,6.
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Problem 3 (Inhomogeneous system

studied by Franco [12])
101 99
y'(x) = ( ?99 1021>
2 2 .
%cos(Zx) —?2—95in(2x) g
y(x) =6{ g 99 5
751n(2x) —7cos(2x) %
_(—1+6\ 0 _( —10 k
y(© = ( 1 ).y ‘(10+25)
for§ = 1073.
Exact solution
y(©) =
(—cos(le) — sin(10x) + 5cos(2x)) L L A
; 1 ! Time (zeconds)
cos(10x) + sin(10x) + dsin(2x) T TFDNICG) o ey mmog
x RKN3(4) PFRKN4(4) * DIRKN(HS)
The Eigen-value of the problem ~ DIRKN3(4) SIHM3(4)

arev=10andv = 1.
The fitted frequency is chosen to be

s , Figure 3: The efficiency curve for TF-LMMC(3) for
v = 10 because it is dominant than v = 1.

Problem 3 with T,,,; = 10*and h = %?5 for

i=1,..,5.
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Problem 4 (Homogenous given

in Attili et.al [2])

y"'(x) = —64y(x) ,y(0) = 1/,,
y'(0)=-1,.

Exact solutionis y = m/lé sin(8x + 9),

Log(max-etror)

0 = —tan"1(4).

The fitted frequency is v = 8.

Il}_jlll illlllfj”llllllll_j”Il3lllll3_|j

Time {seconds)
e TF-LMMC(3) © LMMC(3) «  EHM3(4)
x  REN3I(4) PFREN4(4) * DIRKNHS)
+ DIREN3(4) STHM3(4)

Figure 4: The efficiency curve for TF-LMMC(3) for
Problem 5 with T,,,; = 10* and h = % for
i=3,..,7.
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Problem 5 (Inhomogeneous equation
studied by Papadopoulos et.al [15])
y'(x) = —viy(x) + (v* — Dsin(x),
y(0) = 1,y(0) =v + 1.

Exact solution is y(x) = cos(vx) +
sin(vx) + sin(x).

The fitted frequency isv = 10.

L oglmax -e1ror)

10 20 30 40 S0 60 70
Time (seconds)
e TF-LMMC(3}) © LMMC(3) < EHM3(4)
x RKN3(4) PFRKN4(4) »* DIRKN(HS)
+ DIRKN3(4) STHM3(4)

Figure 6: The efficiency curve for TF-LMMC(3) for Problem

6 with T,y = 10*and h =222 fori =3, ..., 7.

21
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The efficiency curves are shown in Figures 1-5, where problems 1-5 are

tested for a very large interval T,,,; = 10000.

It is observed that TF-LMMC(3) lies below all of the other methods efficiency

graphs. It prove that TF-LMMC(3) is superior compared to the other existing

methods in the literature.

LMMC(3) is as competitive as the other methods for solving oscillatory
problems, though LMMC(3) is method of order three which is one order less

compared to the other methods in comparison.
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Although explicit methods such as EHM3(4) and RKN3(4) needs less time to

do the computation, the methods are less efficient compared to the other

implicit and fitted methods.

Implicit methods: DIRKN(HS), DIRKN3(4), SIHM3(4) and phase-fitted
method: PFRKN4(4), need more time to do the computation, thus less

efficient compared to TF-LMMC(3). For all of the problems tested,
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Problem 1(An almost Periodic Orbit

problem studied by Stiefel and Bettis [19])

y1"(x) + y1(x) = 0.001cos(x),
y1(0) =1,y,(0) =0,

y,"(x) + y,(x) = 0.001sin(x),
y,(0) = 0,y,'(0) = 0.9995,

Exact solution is y; = cos(x) +
0.0005xsin(x), and y, = sin(x)
—0.0005xcos(x).

The fitted frequency is v = 1.

L oglm ax -eiioi)

I 02 04 0.6 08 1.0 12 14
Time (seconds)
e TF-LMMC(4) © LMMC(4) PFREN4(4)
*  DIRKNHS) +  DIRKN3(4) SIHM3(4)

Figure 6: The efficiency curve for TF-LMMC(4) for Problem 1
with Tpyq = 10*and h =2 fori = 1,...,5.
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Problem 2 (Inhomogeneous system

by Lambert and Watson [20])

d? "
%(x) = —v2y;(0) + v2f () + f (%),
y1(0) = a+ f(0),y,(0) = f(0),

d? "
%(x) = =12y, (%) + v f(x) + f (%)

y2(0) = f(0),y,'(0) = va + f'(0)
Exact solution is y; (x) = acos(vx) +

f(x),y,(x) = asin(vx) + f(x), f(x) is chosen

—0.05x

tobee and parameters v and a

are 20 and 0.1 respectively.

L og(m ax-error)

-104

0 20 30 40 50
Time (seconds)
e TF-LMMC(4) © LMMC(4) PFREKN4(4)
* DIRKN(HS) + DIRKN3(4) STHM3(4)

Figure8: The efficiency curve for TF-LMMC(4) for
Problem 2 with T,,; = 10% and h = 2222

— for
2l
i=2,..,6.
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Problem 3 (Inhomogeneous system

studied by Franco [12])
101 99
n 2 2
y"(x) :( 99 101)
2 2
%cos(Zx) —?2—95in(2x)
y(x) =8| g5 99
751n(2x) —7cos(2x)

y(0) = (_11+ 6),3/’(0) = (1O—i()2 5)
for 6§ = 1073,

Exact solution

y(t) =

(—cos(le) — sin(10x) + 5cos(2x))
cos(10x) + sin(10x) + &sin(2x) /°

The Eigen-value of the problem
arev=10and v = 1.

The fitted frequency is chosen to be

v = 10 because it is dominant than v = 1.

L oglmax-eiror)

:Il S Ill[lll o Illil o Ill[lll o Illil o IEII}

Time {zeconds)
e TF-LMMC(4) o LMMC(4) PFREN4(4)
*  DIRKNHS) + DIREN3(4) STHM3(4)

Figure 9: The efficiency curve for TF-LMMC(4) for

Problem 3 with T,,,; = 10*and h = %?5 for

i=1,..,5.
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Problem 4 (Homogenous given

in Attili et.al [2])

y"(x) = —64y(x) ,y(0) = 1/,,
y'(0)=-1/,.
Exact solutionis y = m/lé sin(8x + 9),

Log(m ax-error)

0 = —tan"1(4).

The fitted frequency is v = 8. e e
0.3 1 1.3 2 23 3 33
Time (seconds)
e TF-LMMC(4) © LMMC(4) PFREKN4(4)
* DIRKN(HS) + DIRKN3(4) STHM3(4)

Figure 9: The efficiency curve for TF- LMMC(4) for
Problem 4 with T,,,; = 10* and h = = for
i=3..,7.
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Problem 5 (Inhomogeneous equation 2
studied by Papadopoulos et.al [15]) 3
y'@) = —viy(x) + (V2 - R B\
1)sin(x), B l
§ o -6-
y0) =1,y(0) =v + 1. 5 ]
2
Exact solution isy(x) = cos(vx) + ol
sin(vx) + sin(x). o
The fitted frequencyisv = 10. -1
10 20 30 40 50 60 70
Time {zeconds)
e TFLMMC(4) © LMMC(4) PFRKN4(4)
* DIRKN(HS) + DIRKN3(4) STHIM3(4)

Figure 10: The efficiency curve for TF- LMMC(4) for

Problem 5 with Teng = 10*and h === fori =3,...,7.
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From the efficiency curves in Figures 6-10, we observed that methods with fitting

properties have smaller error.

DIRKN methods have more functions evaluation than LMMs and SIHMs, hence more

computational time is required to implement DIRKN methods.

It is shown that TF-LMMC(4) have better performance compared to the original

method LMMC(4), and superior compared to all the existing methods in comparisons.
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Conclusion

* In this research, we developed linear multistep methods with extra
derivatives using collocation technique of order three (LMMC(3)) and four

(LMMC(4))

* Trigonometrically-Fitted the Linear Multistep Method With Collocation
technique of Order Three (TF-LMMC(3)) and four (TF-LMMC(4)) respectively.
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Numerical results for LMMC(3) which has order three is as comparable as other
existing methods which are of order four

Numerical results for LMMC(4) which is order four is slightly better than other
existing methods in comparisons.

Hence having extra derivtives in the multistep method do improved the accuracy
of the methods.

TF-LMMC(3) and TF-LMMC(4) are clearly superior in solving special second order
ODEs with oscillatory solutions since it involves lesser computational time and
better accuracy

We can conclude that Trigonometrically-fitting the methods improved the effiency

of the methods for integrating oscillatary problems.
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