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Objectives  
 
 1. To derive extra derivative multistep methods of order 3 and 4, 

      using collocation technique. 
       
 
 2. Trigonometrically-fitting the methods. 
  
 
 3. Validating the methods using a set of special second order differential  
      equations  which have oscillatory solutions. 
 
 4. Comparing the numerical results with other well known 
     existing methods in the scientific literature. 
      
 

 



  

   

1. Introduction 
 

The special second order ordinary differential equations (ODEs) can be 

represented by 

 

𝑦" = 𝑓(𝑥, 𝑦), 𝑦 𝑥0 = 𝑥0, 𝑦′ 𝑥0 = 𝑦0
′       (1) 

in which the first derivative does not appear explicitly.  

 

This type of problems often appears in the field of science, mathematics and 

engineering such as quantum mechanics, spatial semi-discretizations of wave 

equations, populations modeling and celestial mechanics.  

 

 
 



  

   

Currently, equation (1) can be solved directly without converting it first to a 

system of first order ODEs. Such methods are direct multistep method, Runge-

Kutta Nystrӧm (RKN) method, and hybrid method. 

 

Work  RKN can be seen can be seen in Dormand et al. [1] and Sommeijer [2]. 

Work on hybrid method can be seen in Franco [3] and Coleman [4],where they 

have developed hybrid algorithm and constructed the order condition of the  

hybrid methods for directly solving equation (1).  

 

Research on  directly solving equation (1) using methods which involved,  the 

interpolation and collocation techniques has  been done by various researchers 

such as the work of authors in [5]-[6]. As well as the work of Awoyemi [7] and 

Jator [8]. 

 

 
 



The special second order ODEs also often exhibit  oscillatory solutions which cannot 

be solved efficiently using conventional methods.  

 

To obtain a more efficient process for solving oscillatory problems,  numerical 

methods are constructed by taking into account the nature of the problem.  

This results in methods in which the coefficients depend on the problem. 

  

Numerical methods can adapted to the special structure of the problem, such 

techniques for this purpose  are trigonometrically-fitted and phase-fitted  

techniques.  

 
 
 
 



  

   

A good theoretical foundation of exponentially fitted technique was given by 

Lyche [9]. Since then a lot of exponentially fitted linear multistep have been 

constructed mostly for special second order ODEs such as (1). 

 

Vanden Berghe et. al [10]. Introduced an explicit exponentially fitted explicit 

Runge-Kutta which integrate exactly first order systems whose solution can be 

expressed as linear combination of functions of the form 𝑒𝜆𝑡, 𝑒−𝜆𝑡  or 

cos 𝜔𝑡 , sin⁡(𝜔𝑡) . 

 

This idea is extended to Runge-Kutta method by Simos [11] and Franco [12]. 

 

 



  

   

 

Fang and Wu [13] , developed a Trigonometrically fitted explicit Numerov-type 

method for second-order initial value problems with oscillating solutions. 

 

In this research, we are going to construct  extra derivative multistep methods of 

order 3 and 4 using collocation technique and Chebyshev polynomial will be used 

as the basis function 

 

In order to improve the efficiency of the methods, we trigonometrically fitted the 

methods so that the coefficients will depend on the fitted frequency and step size 

of the problems. And used the methods for solving oscillatory Differential 

Equations 

 



  

   

2. Derivation of Linear Multistep Methods (LMM)  Using Collocation 
    Technique 

The general 𝑘-step LMM for solving special second order ODEs is given as    

 𝛼𝑗𝑦𝑛+𝑗
𝑘
𝑗=0 = ℎ2 𝛽𝑗𝑓𝑛+𝑗

𝑘
𝑗=0 ⁡ ,⁡ 

Here, we will use Chebyshev Polynomials as basis function. The following are the 

first five terms of the sequence from Chebyshev Polynomials : 

Τ0 𝑥 = 1, Τ1 𝑥 = 𝑥, Τ2 𝑥 = 2𝑥2 − 1,     Τ3 𝑥 = 4𝑥3 − 3𝑥, Τ4 𝑥 = 8𝑥4 −

8𝑥2 + 1                                                                                                                        (2) 

Here, we are going to develop linear multistep method with extra derivatives of the 

form of 

 𝛼𝑗𝑦𝑛+𝑗
𝑘
𝑗=0 = ℎ2 𝜇𝑗𝑓𝑛+𝑗

𝑘
𝑗=0 + ℎ3 𝜂𝑗𝑔𝑛+𝑗

𝑘
𝑗=0 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡      (3) 

 



  

   

where 𝛼𝑗, 𝜇𝑗 and 𝜂𝑗 are constant values, 𝑓𝑛+𝑗 = 𝑦′′𝑛+𝑗 and 𝑔𝑛+𝑗 = 𝑦′′′𝑛+𝑗. 

We proceed to approximate the exact solution 𝑦(𝑥) by the interpolating 

function of the form  

𝑦 𝑥 = 𝑎𝑗𝑇 𝑛 (𝑥 − 𝑥𝑘)

𝑛

𝑗=0

, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (4) 

 

which is the polynomial of degree n and satisfied the equations 

 

𝑦′′ 𝑥 = 𝑓 𝑥, 𝑦 𝑥 , 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+𝑝 ⁡⁡, ⁡𝑦 𝑥𝑘 = 𝑦𝑘 . ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

  

 



  

   

2.1.  Derivation of LMMC(3) 
  

For 𝑛 = 4, equation (4) can be written as 

𝑦 𝑥 = 𝑎0 + 𝑎1 𝑥 − 𝑥𝑘 + 𝑎2 𝑥 − 𝑥𝑘
2 − 1 + 𝑎3 𝑥 − 𝑥𝑘

3 − 3 𝑥 − 𝑥𝑘  

 +𝑎4 𝑥 − 𝑥𝑘
4 − 8 𝑥 − 𝑥𝑘

2 + 1 .                             (6)                                                                 

Differentiating equation (6) three times and we get the first, second, and third 

derivatives of the equations as follows: 

 𝑦′ 𝑥 = 𝑎1 + 𝑎22 𝑥 − 𝑥𝑘 + 𝑎33 𝑥 − 𝑥𝑘
2 − 1     

 +𝑎44 𝑥 − 𝑥𝑘
3 − 4 𝑥 − 𝑥𝑘 ,        (7)  

𝑦′′ 𝑥 = 2𝑎2 + 𝑎36 𝑥 − 𝑥𝑘 + 𝑎44 3 𝑥 − 𝑥𝑘
2 − 4 ,           (8) 

𝑦′′′ 𝑥 = 6𝑎3 + 𝑎424 𝑥 − 𝑥𝑘 ,         (9) 

 



  

   

Next, equations (6) and (8) are collocated at 𝑥 = 𝑥𝑘+1, 𝑥𝑘+2 and interpolated equation 

(9) at 𝑥 = 𝑥𝑘+1 which yields 

𝑦 𝑥𝑘+1 = 𝑎0 + 𝑎1 𝑥𝑘+1 − 𝑥𝑘 + 𝑎2 𝑥𝑘+1 − 𝑥𝑘
2 − 1

+ 𝑎3 𝑥𝑘+1 − 𝑥𝑘
3 − 3 𝑥𝑘+1 − 𝑥𝑘  

 +𝑎4 𝑥𝑘+1 − 𝑥𝑘
4 − 8 𝑥𝑘+1 − 𝑥𝑘

2 + 1 = 𝑦𝑘+1,           (10) 

𝑦 𝑥𝑘+2 = 𝑎0 + 𝑎1 𝑥𝑘+2 − 𝑥𝑘 + 𝑎2 𝑥𝑘+2 − 𝑥𝑘
2 − 1

+ 𝑎3 𝑥𝑘+2 − 𝑥𝑘
3 − 3 𝑥𝑘+2 − 𝑥𝑘  

 +𝑎4 𝑥𝑘+2 − 𝑥𝑘
4 − 8 𝑥𝑘+2 − 𝑥𝑘

2 + 1 = 𝑦𝑘+2,         (11) 



  

   

𝑦′′ 𝑥𝑘+1 = 2𝑎2 + 𝑎36 𝑥𝑘+1 − 𝑥𝑘 + 𝑎44 3 𝑥𝑘+1 − 𝑥𝑘
2 − 4 = 𝑓𝑘+1,           (12) 

𝑦′′ 𝑥𝑘+2 = 2𝑎2 + 𝑎36 𝑥𝑘+2 − 𝑥𝑘 + 𝑎44 3 𝑥𝑘+2 − 𝑥𝑘
2 − 4 = 𝑓𝑘+2,                     (13)  

𝑦′′′ 𝑥𝑘+1 = 6𝑎3 + 𝑎424 𝑥𝑘+1 − 𝑥𝑘 = 𝑔𝑘+1.            (14) 

 

By substituting ℎ = 𝑥𝑘+1 − 𝑥𝑘 and 2ℎ = 𝑥𝑘+2 − 𝑥𝑘 into equations (10)-(14), we obtain 

the following: 

𝑦𝑘+1 = 𝑎0 + ℎ 𝑎1 + 𝑎2 ℎ
2 − 1 + 𝑎3 ℎ

3 − 3ℎ + 𝑎4 ℎ
4 − 8ℎ2 + 1  ,           (15) 

𝑦𝑘+2 = 𝑎0 + 2ℎ 𝑎1 + 𝑎2 4ℎ
2 − 1 + 𝑎3 8ℎ

3 − 6ℎ + 𝑎4 16ℎ
4 − 32ℎ2 + 1 ,         (16) 

𝑓𝑘+1 = 2𝑎2 + 𝑎3 6ℎ + 𝑎4 12ℎ
2 − 16 ,                               (17) 

𝑓𝑘+2 = 2𝑎2 + 𝑎3 12ℎ + 𝑎4 48ℎ
2 − 16 ,                            (18) 

𝑔𝑘+1 = 6𝑎3 + 𝑎4 24ℎ  .                                 (19) 

 



  

   

Rearranging equations (15)-(19) into matrix form as follows: 
 

1 ℎ ℎ2 − 1 ℎ3 − 3ℎ ℎ4 − 8ℎ2 + 1
1 2ℎ 4ℎ2 − 1 8ℎ3 − 6ℎ 16ℎ4 − 16ℎ2 + 1
0 0 2ℎ 6ℎ2 12ℎ2 − 16
0 0 2ℎ 12ℎ2 48ℎ2 − 16
0 0 0 6ℎ 24ℎ2

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4

=

𝑦𝑘+1
𝑦𝑘+2
ℎ𝑓𝑘+1
ℎ𝑓𝑘+2
ℎ𝑔𝑘+1

 

 
which can be simplified as 
 
𝑋𝐴 = 𝑌                                         (20) 
 



  

   

 
 
 

we have 
𝐴 = 𝑋−1𝑌                                       (21) 
 
where 

𝑋−1 =

2 −1
10ℎ4 − 7

12ℎ3
2ℎ4 + 6ℎ2 + 7

12ℎ3
−
2ℎ4 + 12ℎ2 + 7

12ℎ2

−
1

ℎ

1

ℎ
−
13ℎ2 − 12

12ℎ2
−
5ℎ2 + 12

12ℎ2
3 ℎ2 + 2

12ℎ2

0 0 −
2

3ℎ3
3ℎ2 + 4

6ℎ3
−
3ℎ2 + 2

3ℎ2

0 0
1

3ℎ2
−

1

3ℎ2
1

2ℎ

0 0 −
1

12ℎ3
1

12ℎ3
−

1

12ℎ2

 



  

   

Solving (21), the coefficients of 𝑎0,𝑎1, 𝑎2, 𝑎3, and 𝑎4 are obtained in terms of 𝑦𝑘+1, 𝑦𝑘+2 , 
𝑓𝑘+1, 𝑓𝑘+2 and 𝑔𝑘+1. 
 

𝑎0 = 2𝑦𝑘+1 − 𝑦𝑘+2 +
1

12

10ℎ4 − 7

ℎ2
𝑓𝑘+1 +

1

12

2ℎ4 + 6ℎ2 + 7

ℎ2
𝑓𝑘+2 

−
1

12

2ℎ4 + 12ℎ2 + 7

ℎ2
𝑔𝑘+1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑎1 = −
𝑦𝑘+1
ℎ

+
𝑦𝑘+2
ℎ

−
1

12

13ℎ2 − 12

ℎ
𝑓𝑘+1 −

1

12

5ℎ2 + 12

ℎ
𝑓𝑘+2 

+
3

4
ℎ2 + 2 𝑔𝑘+1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑎2 = −
2

3

𝑓𝑘+1
ℎ2

+
1

6

3ℎ2 + 4

ℎ2
𝑓𝑘+2 −

1

3

3ℎ2 + 2

ℎ
𝑔𝑘+1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑎3 =
1

3

𝑓𝑘+1
ℎ

−
1

3

𝑓𝑘+2
ℎ

+
1

2
𝑔𝑘+1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑎4 = −
1

12

𝑓𝑘+1
ℎ2

+
1

12

𝑓𝑘+2
ℎ2

−
1

12

𝑔𝑘+1
ℎ

.⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
Substituting the coefficients into equation (6) and letting 𝑥 = 𝑥𝑘+3, we obtain the following 
equation: 



  

   

𝑦 𝑥𝑘+3 =  2𝑦𝑘+1 − 𝑦𝑘+2 +
1

12

10ℎ4 − 7

ℎ2
𝑓𝑘+1 +

1

12

2ℎ4 + 6ℎ2 + 7

ℎ2
𝑓𝑘+2

−
1

12

2ℎ4 + 12ℎ2 + 7

ℎ2
𝑔𝑘+1 

+  −
𝑦𝑘+1
ℎ

+
𝑦𝑘+2
ℎ

−
1

12

13ℎ2 − 12

ℎ
𝑓𝑘+1 −

1

12

5ℎ2 + 12

ℎ
𝑓𝑘+2

+
3

4
ℎ2 + 2 𝑔𝑘+1 𝑥𝑘+3 − 𝑥𝑘

+ −
2

3

𝑓𝑘+1
ℎ2

+
1

6

3ℎ2 + 4

ℎ2
𝑓𝑘+2 −

1

3

3ℎ2 + 2

ℎ
𝑔𝑘+1 𝑥𝑘+3 − 𝑥𝑘

2 − 1

+
1

3

𝑓𝑘+1
ℎ

−
1

3

𝑓𝑘+2
ℎ

+
1

2
𝑔𝑘+1 𝑥𝑘+3 − 𝑥𝑘

3 − 3 𝑥𝑘+3 − 𝑥𝑘

+
1

3

𝑓𝑘+1
ℎ

−
1

3

𝑓𝑘+2
ℎ

+
1

2
𝑔𝑘+1 𝑥𝑘+3 − 𝑥𝑘

4 − 8 𝑥𝑘+3 − 𝑥𝑘
2 + 1 = 𝑦𝑘+3. 



  

   

 
 
 

Letting 3ℎ = 𝑥𝑘+3 − 𝑥𝑘 , we obtain the discrete form of  LMMC as 
 

𝑦𝑘+3 = 2𝑦𝑘+2 − 𝑦𝑘+1 +
ℎ2

6
−𝑓𝑘+1 + 7𝑓𝑘+2 − ℎ𝑔𝑘+1 , ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (22)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 
 



  

   

 2.2 Order and Consistency of LMMC method 

Definition 1:  
 
The linear difference operator L is defined by  

𝐿 𝑦 𝑥 ; ℎ = 𝛼𝑗𝑦 𝑥 + 𝑗ℎ − ℎ2𝜇𝑗𝑓 𝑥 + 𝑗ℎ − ℎ3𝜂𝑗𝑔 𝑥 + 𝑗ℎ

𝑘

𝑗=0

, 

 

where 𝑦(𝑥) is an arbitrary function that is sufficiently differentiable on [𝑎, 𝑏]. By 

expanding the test function and its first derivative as Taylor series about 𝑥 and 

collecting the terms to obtain  

 

𝐿 𝑦 𝑥 ; ℎ = 𝑐0𝑦 𝑥 + 𝑐1ℎ𝑦
′ 𝑥 +⋯+ 𝑐𝑞ℎ

(𝑞)𝑦(𝑞) 𝑥 + ⋯ ,⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 
 



  

   

where the coefficients of 𝑐𝑞 are constants independent of 𝑦(𝑥). In particular 

 

𝑐0 =  𝛼𝑗
𝑘
𝑗=0 , ⁡⁡ 𝑐1 =  𝑗𝛼𝑗

𝑘
𝑗=0 ,  

 𝑐2 =  
𝑗(2)

2!
𝛼𝑗 − 𝜇𝑗

𝑘
𝑗=0 , 

𝑐3 = 
𝑗(3)

3!
𝛼𝑗 − 𝑗𝜇𝑗 − 𝜂𝑗

𝑘

𝑗=0

⁡ ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

⋮ 

𝑐𝑞 = 
𝑗(𝑞)

𝑞!
𝛼𝑗 −

𝑗(𝑞−2)

(𝑞 − 2)!
𝜇𝑗 −

𝑗(𝑞−3)

(𝑞 − 3)!
𝜂𝑗

𝑘

𝑗=0

. 

 

(23) 



  

   

 
 
 

Definition 2:  

The associated linear multistep method (22) is said to be of the order 𝜌 if  

𝑐0 = 𝑐1 = ⋯ = 𝑐𝜌+1 = 0 and 𝑐𝜌+2 ≠ 0. 

Definition 3 [Consistency of the method] 

The method is said to be consistence if it has order at least one.  

 
By substituting the coefficients into equations (23), we obtain 

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0 and 𝑐5 =
1

8
. 

 
The new method is consistent and has order 𝑝 = 3.  
 

And denoted as linear multistep method with extra derivative using collocation 

technique of order three (LMMC(3)).  

 

 



  

   

 
 
 

2.2. Derivation of LMMC(4) , order and consistency of the method 
  

In this section, we derive the LMMC of order four. For 𝑛 = 5, we obtain equation (4) as 

𝑦 𝑥 = 𝑎0 + 𝑎1 𝑥 − 𝑥𝑘 + 𝑎2 𝑥 − 𝑥𝑘
2 − 1 + 𝑎3 𝑥 − 𝑥𝑘

3 − 3 𝑥 − 𝑥𝑘  

 +𝑎4 𝑥 − 𝑥𝑘
4 − 8 𝑥 − 𝑥𝑘

2 + 1  

 +𝑎5 𝑥 − 𝑥𝑘
5 − 20 𝑥 − 𝑥𝑘

3 + 5 𝑥 − 𝑥𝑘 .                             (24) 

Differentiating equation (24) three times gives 

 

 



  

   

 
 
 

Differentiating equation (24) three times gives 

  𝑦′ 𝑥 = 𝑎1 + 𝑎22 𝑥 − 𝑥𝑘 + 𝑎33 𝑥 − 𝑥𝑘
2 − 1     

  +𝑎44 𝑥 − 𝑥𝑘
3 − 4 𝑥 − 𝑥𝑘 + 𝑎55 𝑥 − 𝑥𝑘

4 − 12 𝑥 − 𝑥𝑘
2 + 1 ,          (25)  

 

𝑦′′ 𝑥 = 2𝑎2 + 𝑎36 𝑥 − 𝑥𝑘 + 𝑎44 3 𝑥 − 𝑥𝑘
2 − 4  

 +𝑎520 𝑥 − 𝑥𝑘
3 − 6 𝑥 − 𝑥𝑘 ,                      (26) 

 

𝑦′′′ 𝑥 = 6𝑎3 + 𝑎424 𝑥 − 𝑥𝑘 + 𝑎560 𝑥 − 𝑥𝑘
2 − 2 ,                (27) 

 



  

   

 
 
 

Equations (24) and (27) are collocated at 𝑥 = 𝑥𝑘+1, 𝑥𝑘+2 , and equation (26) at 

𝑥 = 𝑥𝑘+2, 𝑥𝑘+3 which yields 

𝑦𝑘+1 = 𝑎0 + ℎ 𝑎1 + 𝑎2 ℎ
2 − 1 + 𝑎3 ℎ

3 − 3ℎ + 𝑎4 ℎ
4 − 8ℎ2 + 1  

 +𝑎5 ℎ
5 − 20ℎ2 + 5ℎ  ,                     (28) 

𝑦𝑘+2 = 𝑎0 + 2ℎ 𝑎1 + 𝑎2 4ℎ
2 − 1 + 𝑎3 8ℎ

3 − 6ℎ + 𝑎4 16ℎ
4 − 32ℎ2 + 1  

 +𝑎5 32ℎ
5 − 160ℎ3 + 10ℎ ,           (29) 

𝑓𝑘+2 = 2𝑎2 + 𝑎3 6ℎ + 𝑎4 12ℎ
2 − 16 + 𝑎5 20ℎ

3 − 120ℎ ,        (30) 

𝑓𝑘+3 = 2𝑎2 + 𝑎3 18ℎ + 𝑎4 48ℎ
2 − 16 + 𝑎5 540ℎ

3 − 360ℎ ,        (31) 

𝑔𝑘+1 = 6𝑎3 + 𝑎4 24ℎ + 𝑎5 60ℎℎ2 − 120 ,           (32) 

𝑔𝑘+2 = 6𝑎3 + 𝑎4 48ℎ + 𝑎5 240ℎℎ2 − 120 .          (33) 

 



  

   

 
 
 

Equations (29)-(33) are written in matrix form as follows: 

𝑋𝐴 = 𝑌       

Where 

 

𝑋 =

1 ℎ ℎ2 − 1 ℎ3 − 3ℎ ℎ4 − 8ℎ2 + 1 ℎ5 − 20ℎ3 + 5ℎ
1 2ℎ 4ℎ2 − 1 8ℎ3 − 6ℎ 16ℎ4 − 32ℎ2 + 1 32ℎ5 − 160ℎ3 + 10ℎ
0 0 2ℎ 12ℎ2 48ℎ3 − 16ℎ 160ℎ4 − 240ℎ2

0 0 2ℎ 18ℎ2 108ℎ3 − 16ℎ 540ℎ4 − 360ℎ2

0 0 0 6ℎ 24ℎ2 60ℎ3 − 120ℎ
0 0 0 6ℎ 48ℎ2 240ℎ3 − 120ℎ

, 

 

𝐴 = 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑇 , and 
 
𝑌 = 𝑦𝑘+1 𝑦𝑘+2 ℎ𝑓𝑘+2 ℎ𝑓𝑘+3 ℎ𝑔𝑘+1 ℎ𝑔𝑘+2

𝑇. 
 



  

   

 
 
 

𝑎0 = 2𝑦𝑘+1 − 𝑦𝑘+2 +
3 6ℎ4 + 6ℎ2 + 7

20ℎ2
𝑓𝑘+2 +

2ℎ4 − 8ℎ2 − 21

20ℎ2
𝑓𝑘+3

−
32ℎ4 + 72ℎ2 + 49

60ℎ
𝑔𝑘+1 −

17ℎ4 − 18ℎ2 − 56

30ℎ
𝑔𝑘+2, 

 

𝑎1 = −
1

ℎ
𝑦𝑘+1 +

1

ℎ
𝑦𝑘+2 −

153ℎ4 + 120ℎ2 + 110

100ℎ3
𝑓𝑘+2

+
3ℎ4 + 120ℎ2 + 100

100ℎ3
𝑓𝑘+3 +

392ℎ4 + 480ℎ2 + 165

300ℎ2
𝑔𝑘+1

+
149ℎ4 − 690ℎ2 − 495

300ℎ2
𝑔𝑘+2, 

 



  

   

 
 
 

𝑎2 =
3 3ℎ2 + 4

10ℎ2
𝑓𝑘+2 −

2 ℎ2 + 3

5ℎ2
𝑓𝑘+3 −

2 9ℎ2 + 7

15ℎ2
𝑔𝑘+1

+
9ℎ2 + 32

15ℎ2
𝑔𝑘+2 

 

𝑎3 = −
2 ℎ2 + 1

5ℎ2
𝑓𝑘+2 +

2 ℎ2 + 1

5ℎ2
𝑓𝑘+3 +

8ℎ2 + 3

15ℎ2
𝑔𝑘+1

−
23ℎ2 + 18

30ℎ2
𝑔𝑘+2, 

 

               𝑎4 =
3

20ℎ2
𝑓𝑘+2 −

3

20ℎ2
𝑓𝑘+3 −

7

60ℎ
𝑔𝑘+1 +

4

15ℎ
𝑔𝑘+2, 

 

𝑎5 = −
1

50ℎ3
𝑓𝑘+2 +

1

50ℎ3
𝑓𝑘+3 +

1

100ℎ2
𝑔𝑘+1 −

3

100ℎ2
𝑔𝑘+2. 

  



  

   

 
 
 

We substitute𝑎0,𝑎1, 𝑎2, 𝑎3, 𝑎4 and 𝑎5 into equation (24) and by letting 𝑥 = 𝑥𝑘+3, and 

3ℎ = 𝑥𝑘+3 − 𝑥𝑘  we obtain the discrete form of  LMMC as 

𝑦𝑘+3 = 2𝑦𝑘+2 − 𝑦𝑘+1 +
ℎ2

10
9𝑓𝑘+2 + 𝑓𝑘+3 −

ℎ3

30
𝑔𝑘+1 + 2𝑔𝑘+2 , ⁡⁡⁡⁡⁡⁡⁡ (34) 

 

By substituting back the coefficients into equations (23), we obtain 

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐5 = 0 and 𝑐6 = −
1

144
. 

From Definition 2, the new method is consistent and the order is 𝑝 = 4.  

And denoted as linear multistep method with extra derivative using collocation 

technique (LMMC(4)).  

 



  

   

 
 
 

3.    Trigonometrically-Fitting The Methods 
 

In this section, we adapt the trigonometrically-fitting technique to 

LMMC(3). By letting some of the coefficients to be unknown values of 𝜅𝑖, 

for 𝑖 = 1,2,3, (22) is written as follows: 

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2 𝜅1𝑓𝑛−1 + 𝜅2𝑓𝑛 + ℎ3 𝜅3𝑔𝑛−1 .⁡⁡⁡⁡ (35) 

Assuming that 𝑦 𝑥 ⁡is a linear combination of the functions 

{sin(𝑣𝑥), cos(𝑣𝑥)} for 𝑣 ∈ ℛ. We obtain the following equations: 

 

cos 𝐻 = 2 − cos 𝐻 − 𝐻2 𝜅1 cos 𝐻 + 𝜅2 + 𝜅3𝐻 sin 𝐻 , (36)

 𝜅1 sin 𝐻 = 𝜅3𝐻 cos 𝐻 , 

 

where 𝐻 = 𝑣ℎ, ℎ is the step size and⁡𝑣 is fitted frequency.  

 

 



  

   

 
 
 

Solving equation (36) and letting, 𝜅1 = −1/6, the value of the remaining coefficients 

is obtain in terms of 𝐻. 

𝜅2 =
7

6
+

3

80
𝐻4 +

851

60480
𝐻6 +

20777

3628800
𝐻8 +

7939

3421440
𝐻10 + 𝑂 𝐻12 ,⁡⁡⁡⁡⁡⁡ 

𝜅3 = −
1

6
−

1

18
𝐻2 −

1

45
𝐻4 −

17

1890
𝐻6 −

31

8505
𝐻8 −

691

467775
𝐻10 + 𝑂 𝐻12 . 

 

This new method is denoted as Trigonometrically-fitted linear multistep method 

with extra derivative using collocation technique of order three (TF-LMMC(3)).  

 



  

   

 
 
 

Then  we apply the trigonometrically-fitting technique to LMMC(4). By letting 

some of the coefficients to be unknown values of 𝜅𝑖, for 𝑖 = 1,2,3,4, rewrite the 

formula in (34) as  

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2 𝜅1𝑓𝑛 + 𝜅2𝑓𝑛+1 + ℎ3 𝜅3𝑔𝑛−1 + 𝜅4𝑔𝑛 .⁡⁡⁡⁡ (37) 

 

Assuming that 𝑦 𝑥 ⁡is the linear combination of the function {sin(𝑣ℎ), cos(𝑣ℎ)} 

for 𝑣 ∈ ℛ. Therefore, the following equations are obtained. 

 

cos 𝐻 = 2 − cos 𝐻 − 𝐻2 𝜅1 + 𝜅2 cos 𝐻 + 𝜅3𝐻 sin 𝐻 ,  

                                                                                                                                (38) 

 𝜅2 sin 𝐻 = −𝐻 𝜅3 cos 𝐻 +𝜅4 , 

 

where 𝐻 = 𝑣ℎ, ℎ is the step size and⁡𝑣 is fitted frequency.  

 



  

   

 
 
 

Solving equations in (38) simultaneously by letting 𝜅1 = 9/10 and 𝜅3 = −1/30  

the value of the remaining coefficients is obtained in terms of 𝐻 as follows: 

𝜅2 =
1

10
−

1

144
𝐻4 −

313

100800
𝐻6 −

923

725760
𝐻8 −

6437

12474000
𝐻10 + 𝑂 𝐻12 ,⁡ 

𝜅4 = −
1

15
+

3

400
𝐻4 +

83

432000
𝐻6 +

983

1209600
𝐻8 + 𝑂 𝐻10 .⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

This new method is denoted as Trigonometrically-fitted linear multistep method 

with extra derivative using collocation technique of order four (TF-LMMC(4)).  

 The other coefficients of the method remain the same. This method is 



  

   

 
 
 

4. Numerical Results and Discussion 
  

In this section, the new methods LMMC(3), LMMC(4), TF-LMMC(3) and TF-

LMMC(4) are tested for problems .1-5 . Comparisons are made with other 

existing methods. 

 

The following are the  notation used in figures 1-10: 

 



  

   

 
 
 

TF-LMMC(3) Trigonometrically-fitted linear multistep method with collocation 

method of order three developed in this paper. 

LMMC(3) A linear multistep method with collocation method of order three 

developed in this paper. 

TF-LMMC(4) Trigonometrically-fitted linear multistep method with collocation 

method of order four developed in this paper. 

LMMC(4) A linear multistep method with collocation method of order four 

developed in this paper. 

EHM3(4) Explicit three-stage fourth-order hybrid method derived by Franco 

[12] 



  

   

 
 
 

RKN3(4) Explicit three-stage fourth-order RKN method by Hairer et al.[14]. 

 

PFRKN4(4) Explicit four-stage fourth-order Phase-fitted RKN method by 

Papadopoulos et al.[15]. 

DIRKN(HS) Diagonally implicit three-stage fourth-order RKN method derived in 

Sommeijer [16] 

DIRKN3(4) Diagonally implicit three-stage fourth-order RKN method derived in 

Senu et al. [17] 

SIHM3(4) Semi-implicit three-stage fourth-order hybrid method developed in 

Ahmad et al. [18] 



  

   

Problem 1(An almost Periodic Orbit  
problem studied by Stiefel and Bettis [19]) 
 
𝑦1" 𝑥 + 𝑦1 𝑥 = 0.001cos 𝑥 ,  
𝑦1 0 = 1,𝑦1′ 0 = 0⁡, 
 
𝑦2" 𝑥 + 𝑦2 𝑥 = 0.001sin 𝑥 , 
𝑦2 0 = 0,𝑦2′ 0 = 0.9995⁡, 
 
Exact solution is 𝑦1 = cos 𝑥 + 
0.0005𝑥sin 𝑥 , and 𝑦2 = sin 𝑥  
−0.0005𝑥cos 𝑥 . 
 
The fitted frequency is 𝑣 = 1. 

Figure 1: The efficiency curve for TF-LMMC(3) for  

Problem 1     with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.9

2𝑖
 for 𝑖 = 1,… , 5. 

 

The following are efficiency curves TF-LMMC(3) Method. 
 



Problem 2 (Inhomogeneous system  

                by Lambert and Watson [20]) 

𝑑2𝑦1 𝑥

𝑑𝑡2
= −𝑣2𝑦1 𝑥 + 𝑣2𝑓 𝑥 + 𝑓" 𝑥 , 

𝑦1 0 = 𝑎 + 𝑓 0 , 𝑦1
′ 0 = 𝑓′ 0 , 

𝑑2𝑦2 𝑥

𝑑𝑡2
= −𝑣2𝑦2 𝑥 + 𝑣2𝑓 𝑥 + 𝑓" 𝑥  

𝑦2 0 = 𝑓 0 , 𝑦2
′ 0 = 𝑣𝑎 + 𝑓′ 0  

Exact solution is 𝑦1 𝑥 = 𝑎cos 𝑣𝑥 +

𝑓 𝑥 ,𝑦2 𝑥 = 𝑎sin 𝑣𝑥 + 𝑓 𝑥 , 𝑓 𝑥 ⁡is chosen  

 to be 𝑒−0.05𝑥 and parameters 𝑣 and 𝑎  

are 20 and 0.1 respectively. 

 

 Figure 2: The efficiency curve for TF-LMMC(3) for 

Problem 2  with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.125

2𝑖
 for 

𝑖 = 2,… , 6. 

 



Problem 3 (Inhomogeneous system 
 studied by Franco [12]) 
 

𝑦" 𝑥 =
101
2

−
99
2

−
99
2

101
2

 

𝑦 𝑥 = 𝛿
93
2
cos(2𝑥) −99

2
sin 2𝑥

93
2
sin(2𝑥) −

99
2
cos(2𝑥)

 

𝑦 0 =
−1 + 𝛿

1
, 𝑦′ 0 =

−10
10 + 2𝛿

⁡⁡ 

for 𝛿 = 10−3. 
Exact solution 
𝑦 𝑡 =
−cos 10𝑥 − sin 10𝑥 + 𝛿cos(2𝑥)

cos 10𝑥 + sin 10𝑥 + 𝛿sin(2𝑥)
. 

 
The Eigen-value of the problem 
 are 𝑣 = 10 and 𝑣 = 1. 
The fitted frequency is chosen to be 
 𝑣 = 10 because it is dominant than 𝑣 = 1. 

 

Figure 3: The efficiency curve for TF-LMMC(3) for 

Problem 3 with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.125

2𝑖
 for 

𝑖 = 1,… , 5. 

 



Problem 4 (Homogenous given  

in Attili et.al [2]) 

 

𝑦" 𝑥 = −64𝑦 𝑥  ,𝑦 0 = 1
4 , 

 ⁡𝑦′ 0 = − 1
2  . 

Exact solution is 𝑦 = 17
16 sin 8𝑥 + 𝜃 , 

 𝜃 = 𝜋 − tan−1 4 . 

The fitted frequency is 𝑣 = 8. 

 

Figure 4: The efficiency curve for TF-LMMC(3) for 

Problem 5 with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.1

2𝑖
 for 

𝑖 = 3,… , 7. 
 



Problem 5 (Inhomogeneous equation  

studied by Papadopoulos et.al [15]) 

𝑦′′(𝑥) = ⁡−𝜈2𝑦(𝑥) ⁡+ ⁡(𝜈2 ⁡− ⁡1)sin(𝑥), 

 𝑦(0) ⁡= ⁡1, 𝑦’(0) ⁡= ⁡𝜈⁡ + ⁡1. 

Exact solution is y(𝑥) ⁡= ⁡cos(𝜈𝑥) ⁡+⁡  

sin(𝜈𝑥) ⁡+ ⁡sin(𝑥). 

The fitted frequency is 𝜈⁡ = ⁡10. 

 

Figure 6: The efficiency curve for TF-LMMC(3) for Problem 

6 with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.125

2𝑖
 for 𝑖 = 3,… , 7. 



  

   

 
 
 

The efficiency curves are shown in Figures 1-5, where problems 1-5 are 

tested for a very large interval 𝑇𝑒𝑛𝑑 = 10000.  

 

It is observed that TF-LMMC(3) lies below all of the other methods efficiency 

graphs. It prove that TF-LMMC(3) is superior compared to the other existing 

methods in the literature.  

 

LMMC(3) is as competitive as the other methods for solving oscillatory 

problems, though LMMC(3) is method of order three which is one order less 

compared to the other methods in comparison. 

 
 



  

   

 
 
 

Although explicit methods such as EHM3(4) and RKN3(4) needs less time to 

do the computation, the methods are less efficient compared to the other 

implicit and fitted methods. 

 

Implicit methods: DIRKN(HS), DIRKN3(4), SIHM3(4) and phase-fitted 

method: PFRKN4(4), need more time to do the computation, thus less 

efficient compared to TF-LMMC(3). For all of the problems tested,  



  

   

Problem 1(An almost Periodic Orbit  
problem studied by Stiefel and Bettis [19]) 
𝑦1" 𝑥 + 𝑦1 𝑥 = 0.001cos 𝑥 ,  
𝑦1 0 = 1,𝑦1′ 0 = 0⁡, 
 
𝑦2" 𝑥 + 𝑦2 𝑥 = 0.001sin 𝑥 , 
𝑦2 0 = 0,𝑦2′ 0 = 0.9995⁡, 
 
Exact solution is 𝑦1 = cos 𝑥 + 
0.0005𝑥sin 𝑥 , and 𝑦2 = sin 𝑥  
−0.0005𝑥cos 𝑥 . 
 
The fitted frequency is 𝑣 = 1. 

Figure 6: The efficiency curve for TF-LMMC(4) for Problem 1 

   with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.9

2𝑖
 for 𝑖 = 1,… , 5. 

The following are efficiency curves TF-LMMC(4) Method. 



Problem 2 (Inhomogeneous system  

                by Lambert and Watson [20]) 

𝑑2𝑦1 𝑥

𝑑𝑡2
= −𝑣2𝑦1 𝑥 + 𝑣2𝑓 𝑥 + 𝑓" 𝑥 , 

𝑦1 0 = 𝑎 + 𝑓 0 , 𝑦1
′ 0 = 𝑓′ 0 , 

𝑑2𝑦2 𝑥

𝑑𝑡2
= −𝑣2𝑦2 𝑥 + 𝑣2𝑓 𝑥 + 𝑓" 𝑥  

𝑦2 0 = 𝑓 0 , 𝑦2
′ 0 = 𝑣𝑎 + 𝑓′ 0  

Exact solution is 𝑦1 𝑥 = 𝑎cos 𝑣𝑥 +

𝑓 𝑥 ,𝑦2 𝑥 = 𝑎sin 𝑣𝑥 + 𝑓 𝑥 , 𝑓 𝑥 ⁡is chosen  

 to be 𝑒−0.05𝑥 and parameters 𝑣 and 𝑎  

are 20 and 0.1 respectively. 

 

 

Figure8: The efficiency curve for TF-LMMC(4) for 

Problem 2 with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.125

2𝑖
 for 

𝑖 = 2,… , 6. 
 



Problem 3 (Inhomogeneous system 
 studied by Franco [12]) 
 

𝑦" 𝑥 =
101
2

−
99
2

−
99
2

101
2

 

𝑦 𝑥 = 𝛿
93
2
cos(2𝑥) −99

2
sin 2𝑥

93
2
sin(2𝑥) −

99
2
cos(2𝑥)

 

𝑦 0 =
−1 + 𝛿

1
, 𝑦′ 0 =

−10
10 + 2𝛿

⁡⁡ 

for 𝛿 = 10−3. 
Exact solution 
𝑦 𝑡 =
−cos 10𝑥 − sin 10𝑥 + 𝛿cos(2𝑥)

cos 10𝑥 + sin 10𝑥 + 𝛿sin(2𝑥)
. 

 
The Eigen-value of the problem 
 are 𝑣 = 10 and 𝑣 = 1. 
The fitted frequency is chosen to be 
 𝑣 = 10 because it is dominant than 𝑣 = 1. 

 

Figure 9: The efficiency curve for TF-LMMC(4) for 

Problem 3 with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.125

2𝑖
 for 

𝑖 = 1,… , 5. 

 



Problem 4 (Homogenous given  

in Attili et.al [2]) 

 

𝑦" 𝑥 = −64𝑦 𝑥  ,𝑦 0 = 1
4 , 

 ⁡𝑦′ 0 = − 1
2  . 

Exact solution is 𝑦 = 17
16 sin 8𝑥 + 𝜃 , 

 𝜃 = 𝜋 − tan−1 4 . 

The fitted frequency is 𝑣 = 8. 

 

Figure 9: The efficiency curve for TF-LMMC(4) for 

Problem 4 with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.1

2𝑖
 for 

𝑖 = 3,… , 7. 
 



Problem 5 (Inhomogeneous equation  

studied by Papadopoulos et.al [15]) 

𝑦′′(𝑥) = ⁡−𝜈2𝑦(𝑥) ⁡+⁡(𝜈2 ⁡−

⁡1)sin(𝑥), 

 𝑦(0) ⁡= ⁡1, 𝑦’(0) ⁡= ⁡𝜈⁡ + ⁡1. 

Exact solution is y(𝑥) ⁡= ⁡cos(𝜈𝑥) ⁡+⁡  

sin(𝜈𝑥) ⁡+ ⁡sin(𝑥). 

The fitted frequency is 𝜈⁡ = ⁡10. 

 

Figure 10: The efficiency curve for TF-LMMC(4) for  

Problem 5 with 𝑇𝑒𝑛𝑑 = 104 and  ℎ =
0.125

2𝑖
 for 𝑖 = 3, … , 7. 

 



  

   

 
 
 

From the efficiency curves in Figures 6-10, we observed that methods with fitting 

properties have smaller error.  

 

DIRKN methods have more functions evaluation than LMMs and SIHMs, hence more 

computational time is required to implement DIRKN methods.  

 

It is shown that TF-LMMC(4) have better performance compared to the original 

method LMMC(4), and superior compared to all the existing methods in comparisons.  



  

   

 
 
 

Conclusion  
 

• In this research, we developed linear multistep methods with extra 

derivatives using collocation technique of order three (LMMC(3)) and four 

(LMMC(4)) 

 

•  Trigonometrically-Fitted  the Linear Multistep Method With Collocation 

technique of Order Three (TF-LMMC(3)) and four (TF-LMMC(4)) respectively.  

 



  

   

 
 
 

• Numerical results for LMMC(3) which has order three is as comparable as other 

existing methods which are of order four 

• Numerical results for LMMC(4) which is order four is slightly better than other 

existing methods in comparisons. 

•  Hence having extra derivtives in the multistep method do improved the accuracy 

of the methods. 

•  TF-LMMC(3) and TF-LMMC(4) are clearly superior in solving special second order 

ODEs with oscillatory solutions since it involves lesser computational time and 

better accuracy 

• We can conclude that  Trigonometrically-fitting the methods improved the effiency 

of the methods for integrating oscillatary problems. 
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